Your browser doesn't support javascript.

Biblioteca Virtual em Saúde


Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:


Adicionar mais destinatários
| |

Effect of copper-resistant Stenotrophomonas maltophilia on maize (Zea mays) growth, physiological properties, and copper accumulation: potential for phytoremediation into biofortification.

Gopi, Kachhadiya; Jinal, Hardik Naik; Prittesh, Patel; Kartik, Vinodbhai Patel; Amaresan, Natarajan.
Int J Phytoremediation; 22(6): 662-668, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32062978
In this study, Cu-tolerant PGP bacteria were isolated from the contaminated soils of Tapi (Surat, Gujarat, India). From a set of 118 bacteria isolated from the contaminated soil, the isolate RBTS7 was found to be efficient in tolerating 0.3 g (w/v) Cu. The isolate was identified as Stenotrophomonas maltophilia, based on biochemical and 16S rRNA gene sequencing. Further, the isolate was also found to produce indole acetic acid (140 µg/ml) and siderophore, and solubilize potassium. Inoculation study was carried out in the presence and absence of Cu in the greenhouse. The results revealed that S. maltophilia enhanced plant growth and biomasses compared to control. In addition to plant growth attributes, the isolate also enhanced chlorophyll a and b (434.1 and 496.7%) contents and antioxidant properties such as proline (168.2%), total phenolic compounds (33.5%), and ascorbic acid oxidase (62.3%) compared to control with Cu and without Cu. Inoculation of S. maltophilia + Cu enhanced the uptake of Cu in maize root (77.4%) and stem (112.0%) compared to Cu-stressed control. The results clearly indicated the inoculation of S. maltophilia reduced the toxicity of Cu and in turn enhanced the plant growth and mobilization of Cu to the plant parts.
Selo DaSilva