Your browser doesn't support javascript.

Biblioteca Virtual em Saúde


Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:


Adicionar mais destinatários
| |

A compartmentalized mathematical model of mouse atrial myocytes.

Asfaw, Tesfaye Negash; Tyan, Leonid; Glukhov, Alexey V; Bondarenko, Vladimir E.
Am J Physiol Heart Circ Physiol; 318(3): H485-H507, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31951471
Various experimental mouse models are extensively used to research human diseases, including atrial fibrillation, the most common cardiac rhythm disorder. Despite this, there are no comprehensive mathematical models that describe the complex behavior of the action potential and [Ca2+]i transients in mouse atrial myocytes. Here, we develop a novel compartmentalized mathematical model of mouse atrial myocytes that combines the action potential, [Ca2+]i dynamics, and ß-adrenergic signaling cascade for a subpopulation of right atrial myocytes with developed transverse-axial tubule system. The model consists of three compartments related to ß-adrenergic signaling (caveolae, extracaveolae, and cytosol) and employs local control of Ca2+ release. It also simulates ionic mechanisms of action potential generation and describes atrial-specific Ca2+ handling as well as frequency dependences of the action potential and [Ca2+]i transients. The model showed that the T-type Ca2+ current significantly affects the later stage of the action potential, with little effect on [Ca2+]i transients. The block of the small-conductance Ca2+-activated K+ current leads to a prolongation of the action potential at high intracellular Ca2+. Simulation results obtained from the atrial model cells were compared with those from ventricular myocytes. The developed model represents a useful tool to study complex electrical properties in the mouse atria and could be applied to enhance the understanding of atrial physiology and arrhythmogenesis.NEW & NOTEWORTHY A new compartmentalized mathematical model of mouse right atrial myocytes was developed. The model simulated action potential and Ca2+ dynamics at baseline and after stimulation of the ß-adrenergic signaling system. Simulations showed that the T-type Ca2+ current markedly prolonged the later stage of atrial action potential repolarization, with a minor effect on [Ca2+]i transients. The small-conductance Ca2+-activated K+ current block resulted in prolongation of the action potential only at the relatively high intracellular Ca2+.
Selo DaSilva