Your browser doesn't support javascript.

Biblioteca Virtual em Saúde

Brasil

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:

Exportar

Email
Adicionar mais destinatários
| |

Quantitative real-time PCR assay for the rapid identification of the intrinsically multidrug-resistant bacterial pathogen Stenotrophomonas maltophilia.

Fraser, Tamieka A; Bell, Mikaela G; Harris, Patrick N A; Bell, Scott C; Bergh, Haakon; Nguyen, Thuy-Khanh; Kidd, Timothy J; Nimmo, Graeme R; Sarovich, Derek S; Price, Erin P.
Microb Genom; 5(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31617838
Stenotrophomonas maltophilia is emerging as an important cause of disease in nosocomial and community-acquired settings, including bloodstream, wound and catheter-associated infections. Cystic fibrosis (CF) airways also provide optimal growth conditions for various opportunistic pathogens with high antibiotic tolerance, including S. maltophilia. Currently, there is no rapid, cost-effective and accurate molecular method for detecting this potentially life-threatening pathogen, particularly in polymicrobial specimens, suggesting that its true prevalence is underestimated. Here, we used large-scale comparative genomics to identify a specific genetic target for S. maltophilia, with subsequent development and validation of a real-time PCR assay for its detection. Analysis of 167 Stenotrophomonas spp. genomes identified a conserved 4 kb region in S. maltophilia, which was targeted for Black Hole Quencher assay design. Our assay yielded the positive detection of 89 of 89 (100%) clinical S. maltophilia strains, and no amplification of 23 non-S. maltophilia clinical isolates. S. maltophilia was detected in 10 of 16 CF sputa, demonstrating the assay's utility for direct detection in respiratory specimens. The assay demonstrated good sensitivity, with limits of detection and quantitation on pure culture of ~10 and ~100 genome equivalents, respectively. Our assay provides a highly specific, sensitive and cost-effective method for the accurate identification of S. maltophilia, and will improve the diagnosis and treatment of this under-recognized pathogen by enabling its accurate and rapid detection from polymicrobial clinical and environmental samples.
Selo DaSilva