Your browser doesn't support javascript.

Biblioteca Virtual em Saúde

Brasil

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:

Exportar

Email
Adicionar mais destinatários
| |

Classification of temporal ICA components for separating global noise from fMRI data: Reply to Power.

Glasser, Matthew F; Coalson, Timothy S; Bijsterbosch, Janine D; Harrison, Samuel J; Harms, Michael P; Anticevic, Alan; Van Essen, David C; Smith, Stephen M.
Neuroimage; 197: 435-438, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31026516
We respond to a critique of our temporal Independent Components Analysis (ICA) method for separating global noise from global signal in fMRI data that focuses on the signal versus noise classification of several components. While we agree with several of Power's comments, we provide evidence and analysis to rebut his major criticisms and to reassure readers that temporal ICA remains a powerful and promising denoising approach.
Selo DaSilva