Your browser doesn't support javascript.

Biblioteca Virtual em Saúde


Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:


Adicionar mais destinatários
| |

Seasonal variations in measurements of linear accelerator output.

Bartolac, Steven; Heaton, Robert; Norrlinger, Bernhard; Letourneau, Daniel.
J Appl Clin Med Phys; 20(3): 81-88, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30817079


Seasonal trends in linear accelerator output have been reported by at least one institution and data have suggested that they may be present at our center as well. The purpose of this work was to characterize these trends and determine whether local environmental conditions within the treatment rooms may be impacting the linear accelerators and/or the quality control (QC) dosimeter.


Runtime plots of daily output data, acquired using an in-house ion chamber-based device, over 3 yr and for 15 linear accelerators of different makes and models were reviewed and evaluated. Environmental conditions were monitored prospectively in a representative treatment room for approximately 9 months and evaluated for correlations with output trends. Independent measures of output using daily MV portal images were compared with output measurements using the ion chamber-based device. A separate controlled experiment probing the response of the in-house dosimeter to humidity changes over time was also carried out using a constant current source and a small enclosure.


Runtime plots of output revealed sinusoidal, seasonal variations that were consistent across all treatment units, irrespective of manufacturer, model, or age of machine. The amplitude of the variation was on the order of 1% and maintained a yearly period. The independent measure of output using MV portal images did not corroborate the seasonal trends observed with the daily QC dosimeter. Based on the controlled experiment, the QC dosimeter was found to have a dependence on relative humidity changes, decreasing 1% in output per 30% increase in relative humidity.


Results confirm the presence of underlying seasonal variations in measured output from the linear accelerators. The findings identify humidity impact on the measurement device as the underlying cause of the cyclical changes and not the accelerators themselves. These results could help minimize unwarranted machine servicing.
Selo DaSilva