Your browser doesn't support javascript.

Biblioteca Virtual em Saúde


Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:


Adicionar mais destinatários
| |

Oldest ctenodactyloid tarsals from the Eocene of China and evolution of locomotor adaptations in early rodents.

Fostowicz-Frelik, Lucja; Li, Qian; Ni, Xijun.
BMC Evol Biol; 18(1): 150, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30286712


Tamquammys has been considered one of the basal ctenodactyloid rodents, which has been documented in the earliest to middle Eocene (~ 56.0-48.5 Ma) in China. It was the most abundant and widespread rodent genus in the Erlian Basin (Nei Mongol, China) and dominated Arshantan small-mammal faunas of that region. Here for the first time we describe the morphology of the astragalocalcaneal complex in Tamquammys robustus (larger) and T. wilsoni, and interpret it against the background of locomotor adaptations of basal Euarchontoglires (rodents, lagomorphs, tree shrews, and primates).


The comparative morphology of the tarsal elements in Tamquammys robustus and T. wilsoni shows overall slenderness of the bones and their similarity to the tarsal elements of Rattus, a generalist species, and those of small rock squirrels (e.g. Sciurotamias). The two species differ slightly in their cursorial ability; smaller T. wilsoni shows some adaptations to climbing. The results of principal component analysis of the calcaneus and astragalus support this observation and place T. robustus in-between Rattus and ground/rock squirrel morphospace, and T. wilsoni closer to euarchontans, Tupaia and Purgatorius.


The morphology of the tarsal elements in Tamquammys indicates a generalist rodent morphotype with no particular adaptations to arboreality. We suggest that Tamquammys as a basal ctenodactyloid is closer to the ancestral astragalocalcaneal morphology of rodents than that of more derived North American paramyines of similar age. Overall similarity in Tamquammys tarsal elements structure to Purgatorius, a basal primate, may point to the antiquity of the tarsal structure in Tamquammys and a generally unspecialized foot structure in early Euarchontoglires.
Selo DaSilva