Your browser doesn't support javascript.

Biblioteca Virtual em Saúde

Brasil

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:

Exportar

Email
Adicionar mais destinatários
| |

miR-139-5p Modulates Radiotherapy Resistance in Breast Cancer by Repressing Multiple Gene Networks of DNA Repair and ROS Defense.

Pajic, Marina; Froio, Danielle; Daly, Sheridan; Doculara, Louise; Millar, Ewan; Graham, Peter H; Drury, Alison; Steinmann, Angela; de Bock, Charles E; Boulghourjian, Alice; Zaratzian, Anaiis; Carroll, Susan; Toohey, Joanne; O'Toole, Sandra A; Harris, Adrian L; Buffa, Francesca M; Gee, Harriet E; Hollway, Georgina E; Molloy, Timothy J.
Cancer Res; 78(2): 501-515, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29180477
Radiotherapy is essential to the treatment of most solid tumors and acquired or innate resistance to this therapeutic modality is a major clinical problem. Here we show that miR-139-5p is a potent modulator of radiotherapy response in breast cancer via its regulation of genes involved in multiple DNA repair and reactive oxygen species defense pathways. Treatment of breast cancer cells with a miR-139-5p mimic strongly synergized with radiation both in vitro and in vivo, resulting in significantly increased oxidative stress, accumulation of unrepaired DNA damage, and induction of apoptosis. Several miR-139-5p target genes were also strongly predictive of outcome in radiotherapy-treated patients across multiple independent breast cancer cohorts. These prognostically relevant miR-139-5p target genes were used as companion biomarkers to identify radioresistant breast cancer xenografts highly amenable to sensitization by cotreatment with a miR-139-5p mimetic.Significance: The microRNA described in this study offers a potentially useful predictive biomarker of radiosensitivity in solid tumors and a generally applicable druggable target for tumor radiosensitization. Cancer Res; 78(2); 501-15. ©2017 AACR.
Selo DaSilva