Your browser doesn't support javascript.

Biblioteca Virtual em Saúde


Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:


Adicionar mais destinatários
| |

A2B-Miktoarm Glycopolymer Fibers and Their Interactions with Tenocytes.

Liu, Renjie; Patel, Dharmesh; Screen, Hazel R C; Becer, C Remzi.
Bioconjug Chem; 28(7): 1955-1964, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28636335
Electrospun biodegradable membranes have attracted great attention for a range of tissue engineering applications. Among them, poly(ε-caprolactone) (PCL) is one of the most widely used polymers, owing to its well-controlled biocompatibility and biodegradability. However, PCL also has a number of limitations, such as its hydrophobic nature and the lack of functional groups on its side chain, limiting its ability to interact with cells. Herein, we have designed and prepared a series of well-defined A2B-miktoarm copolymers with PCL and glycopolymer segments to address these limitations. Moreover, copolymers were electrospun to make membranes, which were studied in vitro to investigate cell affinity, toxicity, activity, and adhesion with these materials. The results indicate that incorporating glucose moieties into miktoarm polymers has improved the biocompatibility of the PCL while increasing the cellular interaction with the membrane material.
Selo DaSilva