Your browser doesn't support javascript.

Biblioteca Virtual em Saúde

Brasil

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:

Exportar

Email
Adicionar mais destinatários
| |

Tracking protons from respiratory chain complexes to ATP synthase c-subunit: The critical role of serine and threonine residues.

Panfoli, Isabella; Ponassi, Marco; Ravera, Silvia; Calzia, Daniela; Beitia, Maider; Morelli, Alessandro; Rosano, Camillo.
Biochem Biophys Res Commun; 482(4): 922-927, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27890618
F1Fo-ATP synthase is a multisubunit enzyme responsible for the synthesis of ATP. Among its multiple subunits (8 in E. coli, 17 in yeast S. cerevisiae, 16 in vertebrates), two subunits a and c are known to play a central role controlling the H+ flow through the inner mitochondrial membrane which allows the subsequent synthesis of ATP, but the pathway followed by H+ within the two proteins is still a matter of debate. In fact, even though the structure of ATP synthase is now well defined, the molecular mechanisms determining the function of both F1 and FO domains are still largely unknown. In this study, we propose a pathway for proton migration along the ATP synthase by hydrogen-bonded chain mechanism, with a key role of serine and threonine residues, by X-ray diffraction data on the subunit a of E. coli Fo.
Selo DaSilva