Your browser doesn't support javascript.

Biblioteca Virtual em Saúde

Brasil

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:

Exportar

Email
Adicionar mais destinatários
| |

The Aryl Hydrocarbon Receptor Modulates Production of Cytokines and Reactive Oxygen Species and Development of Myocarditis during Trypanosoma cruzi Infection.

Barroso, Andréia; Gualdrón-López, Melisa; Esper, Lísia; Brant, Fátima; Araújo, Ronan R S; Carneiro, Matheus B H; Ávila, Thiago V; Souza, Danielle G; Vieira, Leda Q; Rachid, Milene A; Tanowitz, Herbert B; Teixeira, Mauro M; Machado, Fabiana S.
Infect Immun; 84(10): 3071-82, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27481250
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor involved in controlling several aspects of immune responses, including the activation and differentiation of specific T cell subsets and antigen-presenting cells, thought to be relevant in the context of experimental Trypanosoma cruzi infection. The relevance of AhR for the outcome of T. cruzi infection is not known and was investigated here. We infected wild-type (WT) mice and AhR knockout (AhR KO) mice with T. cruzi (Y strain) and determined levels of parasitemia, myocardial inflammation and fibrosis, expression of AhR/cytokines/suppressor of cytokine signaling (SOCS) (spleen/heart), and production of nitric oxide (NO), reactive oxygen species (ROS), and peroxynitrite (ONOO(-)) (spleen). AhR expression was increased in the heart of infected WT mice. Infected AhR KO mice displayed significantly reduced parasitemia, inflammation, and fibrosis of the myocardium. This was associated with an anticipated increased immune response characterized by increased levels of inflammatory cytokines and reduced expression of SOCS2 and SOCS3 in the heart. In vitro, AhR deficiency caused impairment in parasite replication and decreased levels of ROS production. In conclusion, AhR influences the development of murine Chagas disease by modulating ROS production and regulating the expression of key physiological regulators of inflammation, SOCS1 to -3, associated with the production of cytokines during experimental T. cruzi infection.
Selo DaSilva