Your browser doesn't support javascript.

Biblioteca Virtual em Saúde

Brasil

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:

Exportar

Email
Adicionar mais destinatários
| |

A semi-mechanistic model to characterize the pharmacokinetics and pharmacodynamics of brodalumab in healthy volunteers and subjects with psoriasis in a first-in-human single ascending dose study.

Salinger, David H; Endres, Christopher J; Martin, David A; Gibbs, Megan A.
Clin Pharmacol Drug Dev; 3(4): 276-83, 2014 07.
Artigo em Inglês | MEDLINE | ID: mdl-27128833
Pharmacokinetic-pharmacodynamic (PK-PD) modeling can provide a framework for quantitative "learning and confirming" from studies in all phases of drug development. Brodalumab is a human monoclonal antibody (IgG2 ) targeting the IL-17 receptor A that blocks signaling by cytokines thought to play a central role in the pathogenesis of psoriasis (IL-17A, IL-17F, and IL-17A/F). We used semi-mechanistic modeling of single dose, first-in-human data to characterize the exposure-response relationship between brodalumab and the Psoriasis Area and Severity Index (PASI) in a Phase 1 clinical trial. Fifty-seven healthy volunteers and 25 subjects with moderate to severe psoriasis received single intravenous or subcutaneous administration of placebo or brodalumab (7-700 mg). A two-compartment model with parallel linear and nonlinear (Michaelis-Menten) elimination pathways described brodalumab PK. The PK-PASI relationship was characterized by linking a signaling compartment with an indirect response model of psoriatic plaques, where signaling suppressed plaque formation. The concentration of half-maximal inhibition IC50 was 2.86 µg/mL (SE: 50%). The endogenous psoriatic plaque formation rate of 0.862 (SE: 40%) PASI units/day was comparable with literature precedent. Despite the small sample size and single administration data, this semi-mechanistic modeling approach provided a quantitative framework to inform design of dose-ranging Phase 2 studies of brodalumab in psoriasis.
Selo DaSilva