Your browser doesn't support javascript.

Biblioteca Virtual em Saúde

Brasil

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:

Exportar

Email
Adicionar mais destinatários
| |

Surface Glycopolymers Are Crucial for In Vitro Anti-Wall Teichoic Acid IgG-Mediated Complement Activation and Opsonophagocytosis of Staphylococcus aureus.

Lee, Jong-Ho; Kim, Na-Hyang; Winstel, Volker; Kurokawa, Kenji; Larsen, Jesper; An, Jang-Hyun; Khan, Adnan; Seong, Min-Young; Lee, Min Ja; Andersen, Paal Skytt; Peschel, Andreas; Lee, Bok Luel.
Infect Immun; 83(11): 4247-55, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26283333
The cell envelopes of many Gram-positive bacteria contain wall teichoic acids (WTAs). Staphylococcus aureus WTAs are composed of ribitol phosphate (RboP) or glycerol phosphate (GroP) backbones substituted with D-alanine and N-acetyl-D-glucosamine (GlcNAc) or N-acetyl-D-galactosamine (GalNAc). Two WTA glycosyltransferases, TarM and TarS, are responsible for modifying the RboP WTA with α-GlcNAc and ß-GlcNAc, respectively. We recently reported that purified human serum anti-WTA IgG specifically recognizes ß-GlcNAc of the staphylococcal RboP WTA and then facilitates complement C3 deposition and opsonophagocytosis of S. aureus laboratory strains. This prompted us to examine whether anti-WTA IgG can induce C3 deposition on a diverse set of clinical S. aureus isolates. To this end, we compared anti-WTA IgG-mediated C3 deposition and opsonophagocytosis abilities using 13 different staphylococcal strains. Of note, the majority of S. aureus strains tested was recognized by anti-WTA IgG, resulting in C3 deposition and opsonophagocytosis. A minority of strains was not recognized by anti-WTA IgG, which correlated with either extensive capsule production or an alteration in the WTA glycosylation pattern. Our results demonstrate that the presence of WTAs with TarS-mediated glycosylation with ß-GlcNAc in clinically isolated S. aureus strains is an important factor for induction of anti-WTA IgG-mediated C3 deposition and opsonophagocytosis.
Selo DaSilva