Your browser doesn't support javascript.

Biblioteca Virtual em Saúde


Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:


Adicionar mais destinatários
| |

Pacing the Heart with Genes: Recent Progress in Biological Pacing.

Cho, Hee Cheol.
Curr Cardiol Rep; 17(8): 65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26116393
The heartbeat originates within the sinoatrial node (SA node or SAN), a small highly specialized structure containing <10,000 genuine pacemaker cells. The ~5 billion working cardiomyocytes downstream of the SAN remain quiescent when it fails, leading to circulatory collapse and fueling a $6B/year electronic pacemaker industry. The electronic pacemaker devices work quite well. But, device-related problems persist. These include lead failure/repositioning, finite battery life, and infection. For pediatric patients, the children outgrow the length of the leads, necessitating replacement with longer leads. These pitfalls have motivated creation of biological pacing. that are free from all hardware. Toward this goal, we and others have tested the concept of biological pacemakers. Combined with efforts to create clinically relevant, large animal models of biological pacing, the field is moving beyond a conceptual novelty toward a future with clinical reality.
Selo DaSilva