Your browser doesn't support javascript.

Biblioteca Virtual em Saúde


Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:


Adicionar mais destinatários
| |

Predicting the location of missing outer hair cells using the electrical signal recorded at the round window.

Chertoff, Mark E; Earl, Brian R; Diaz, Francisco J; Sorensen, Janna L; Thomas, Megan L A; Kamerer, Aryn M; Peppi, Marcello.
J Acoust Soc Am; 136(3): 1212, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25190395
The electrical signal recorded at the round window was used to estimate the location of missing outer hair cells. The cochlear response was recorded to a low frequency tone embedded in high-pass filtered noise conditions. Cochlear damage was created by either overexposure to frequency-specific tones or laser light. In animals with continuous damage along the partition, the amplitude of the cochlear response increased as the high-pass cutoff frequency increased, eventually reaching a plateau. The cochlear distance at the onset of the plateau correlated with the anatomical onset of outer hair cell loss. A mathematical model replicated the physiologic data but was limited to cases with continuous hair cell loss in the middle and basal turns. The neural contribution to the cochlear response was determined by recording the response before and after application of Ouabain. Application of Ouabain eliminated or reduced auditory neural activity from approximately two turns of the cochlea. The amplitude of the cochlear response was reduced for moderate signal levels with a limited effect at higher levels, indicating that the cochlear response was dominated by outer hair cell currents at high signal levels and neural potentials at low to moderate signal levels.
Selo DaSilva