Your browser doesn't support javascript.

Biblioteca Virtual em Saúde


Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:


Adicionar mais destinatários
| |

Methylglyoxal causes endothelial dysfunction: the role of endothelial nitric oxide synthase and AMP-activated protein kinase α.

Turkseven, Saadet; Ertuna, Elif; Yetik-Anacak, Gunay; Yasa, Mukadder.
J Basic Clin Physiol Pharmacol; 25(1): 109-15, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24127540


Methylglyoxal is a major precursor in the formation of advanced glycation end products and is associated with the pathogenesis of diabetes-related vascular complications. The aim of this study was to evaluate whether methylglyoxal induces endothelial dysfunction and to determine the contributors involved in this process.


Rat thoracic aortic rings were treated for 24 h with 100 µM methylglyoxal by using an organ culture method. A cumulative dose-response curve to acetylcholine was obtained to determine endothelium-dependent relaxation. The protein levels of endothelial nitric oxide synthase (eNOS) and its phosphorylated form at the serine 1177 site [p-eNOS (Ser1177)], heat shock protein 90 (Hsp90), AMP-activated protein kinase α (AMPKα) and its phosphorylated form at the threonine 172 site [p-AMPKα (Thr172)] were evaluated. Superoxide production was determined by lucigenin-chemiluminescence.


Treatment with 100 µM methylglyoxal for 24 h decreased acetylcholine-induced vascular relaxation. The levels of eNOS and p-eNOS (Ser1177) were reduced while no effect on Hsp90 was observed. Levels of p-AMPKα (Thr172) were significantly decreased without any change in total AMPKα protein levels. Superoxide level was not affected by methylglyoxal treatment.


In rat aortic rings, methylglyoxal determines a reduction in endothelium-dependent relaxation. This effect seems to be mediated via a reduction in p-eNOS (Ser1177) and p-AMPKα (Thr172).
Selo DaSilva