Your browser doesn't support javascript.

Biblioteca Virtual em Saúde


Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:


Adicionar mais destinatários
| |

Normalization of glutamate decarboxylase gene expression in the entopeduncular nucleus of rats with a unilateral 6-hydroxydopamine lesion correlates with increased GABAergic input following intermittent but not continuous levodopa.

Nielsen, K M; Soghomonian, J-J.
Neuroscience; 123(1): 31-42, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14667439
The expression of mRNA encoding for the 67 kilodalton isoform of glutamate decarboxylase (GAD67) was examined by in situ hybridization histochemistry in the entopeduncular nucleus (EP) of adult rats with a 6-hydroxydopamine unilaterally lesion of dopamine neurons. Our results provide original evidence that continuous or intermittent levodopa administration is equally effective at reversing the lesion-induced increase in GAD67 mRNA expression in the EP when compared with vehicle controls. To characterize the GABAergic interactions that may mediate levodopa-induced alterations in the EP, double-labeling in situ hybridization was conducted with a combination of GAD67 radioactive and preproenkephalin or preprotachykinin digoxigenin-labeled complementary RNA probes in the striatum. Levels of GAD67 mRNA labeling were significantly increased by intermittent, but not continuous levodopa. Analysis at the cellular level in a dorsal sector of the striatum revealed that GAD67 mRNA levels increased predominantly in preproenkephalin-unlabeled neuronal profiles, presumably striatal/EP neurons (+99.3%). Saturation analyses of (3)H-flunitrazepam binding to GABA(A) receptors in the EP showed that the increase in GAD67 mRNA in preproenkephalin-unlabeled neurons by intermittent levodopa paralleled a significant decrease in number of GABA(A) receptors (Bmax) in the EP ipsilateral to the lesion. Continuous levodopa failed to alter striatal GAD67 mRNA levels, or the number or affinity of GABA(A) receptors when compared with vehicle-treated controls. These results suggest the normalization of GAD gene expression in the EP by intermittent levodopa involves an increase in GABAergic inhibition by striatonigral/EP neurons of the direct pathway. Conversely, the effects of continuous levodopa on GAD mRNA levels in the EP do not appear to be mediated by GABA.
Selo DaSilva