Your browser doesn't support javascript.

Biblioteca Virtual em Saúde


Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:


Adicionar mais destinatários
| |

Specificity of memapsin 1 and its implications on the design of memapsin 2 (beta-secretase) inhibitor selectivity.

Turner, Robert T; Loy, Jeffrey A; Nguyen, Chan; Devasamudram, Thippeswamy; Ghosh, Arun K; Koelsch, Gerald; Tang, Jordan.
Biochemistry; 41(27): 8742-6, 2002 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-12093293
Memapsin 1 is closely homologous to memapsin 2 (BACE), or beta-secretase, whose action on beta-amyloid precursor protein (APP) leads to the production of beta-amyloid (A beta) peptide and the progression of Alzheimer's disease. Memapsin 2 is a current target for the development of inhibitor drugs to treat Alzheimer's disease. Although memapsin 1 hydrolyzes the beta-secretase site of APP, it is not significantly present in the brain, and no direct evidence links it to Alzheimer's disease. We report here the residue specificity of eight memapsin 1 subsites. In substrate positions P(4), P(3), P(2), P(1), P(1)', P(2)', P(3)', and P(4)', the most preferred residues are Glu, Leu, Asn, Phe, Met, Ile, Phe, and Trp, respectively, while the second preferred residues are Gln, Ile, Asp, Leu, Leu, Val, Trp, and Phe, respectively. Other less preferred residues can also be accommodated in these subsites of memapsin 1. Despite the broad specificity, these residue preferences are strikingly similar to those of human memapsin 2 [Turner et al. (2001) Biochemistry 40, 10001-10006] and thus pose a serious problem to the design of differentially selective inhibitors capable of inhibiting memapsin 2. This difficulty was confirmed by the finding that several potent memapsin 2 inhibitors effectively inhibited memapsin 1 as well. Several possible approaches to overcome this problem are discussed.
Selo DaSilva