Sua seleção (0)
Detalhe da pesquisa
1.
Ovine model for auricular reconstruction: porous polyethylene implants.
Ann Otol Rhinol Laryngol;
123(2): 135-40, 2014 Feb.
Artigo
em Inglês
| MEDLINE | ID: mdl-24574469
2.
Engineered vascularized bone grafts.
Proc Natl Acad Sci U S A;
107(8): 3311-6, 2010 Feb 23.
Artigo
em Inglês
| MEDLINE | ID: mdl-20133604
3.
Mechanical dissociation of swine liver to produce organoid units for tissue engineering and in vitro disease modeling.
Artif Organs;
34(1): 75-8, 2010 Jan.
Artigo
em Inglês
| MEDLINE | ID: mdl-20432518
4.
Neural precursor cell lines promote neurite branching.
Int J Neurosci;
119(1): 15-39, 2009.
Artigo
em Inglês
| MEDLINE | ID: mdl-19116829
5.
The effect of sustained delivery of vascular endothelial growth factor on angiogenesis in tissue-engineered intestine.
Biomaterials;
29(19): 2884-90, 2008 Jul.
Artigo
em Inglês
| MEDLINE | ID: mdl-18396329
6.
Freeze-cast Porous Chitosan Conduit for Peripheral Nerve Repair.
MRS Adv;
3(30): 1677-1683, 2018.
Artigo
em Inglês
| MEDLINE | ID: mdl-30009044
7.
Fluorescent Reporter Mice for Nerve Guidance Conduit Assessment: A High-Throughput in vivo Model.
Laryngoscope;
128(11): E386-E392, 2018 Nov.
Artigo
em Inglês
| MEDLINE | ID: mdl-30098047
8.
In vivo response to decellularized mesothelium scaffolds.
J Biomed Mater Res B Appl Biomater;
106(2): 716-725, 2018 02.
Artigo
em Inglês
| MEDLINE | ID: mdl-28323397
9.
Correction to: Bone Marrow Derived Pluripotent Cells are Pericytes which Contribute to Vascularization.
Stem Cell Rev;
2018 Nov 08.
Artigo
em Inglês
| MEDLINE | ID: mdl-30406890
10.
Chondrogenesis by bone marrow-derived mesenchymal stem cells grown in chondrocyte-conditioned medium for auricular reconstruction.
J Tissue Eng Regen Med;
11(10): 2763-2773, 2017 Oct.
Artigo
em Inglês
| MEDLINE | ID: mdl-27256796
11.
In vitro evaluation of decellularized ECM-derived surgical scaffold biomaterials.
J Biomed Mater Res B Appl Biomater;
105(3): 585-593, 2017 04.
Artigo
em Inglês
| MEDLINE | ID: mdl-26663848
12.
Ear-Shaped Stable Auricular Cartilage Engineered from Extensively Expanded Chondrocytes in an Immunocompetent Experimental Animal Model.
Tissue Eng Part A;
22(3-4): 197-207, 2016 Feb.
Artigo
em Inglês
| MEDLINE | ID: mdl-26529401
13.
Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material.
Biomaterials;
26(27): 5454-64, 2005 Sep.
Artigo
em Inglês
| MEDLINE | ID: mdl-15860202
14.
Conditions for seeding and promoting neo-auricular cartilage formation in a fibrous collagen scaffold.
J Craniomaxillofac Surg;
43(3): 382-9, 2015 Apr.
Artigo
em Inglês
| MEDLINE | ID: mdl-25600627
15.
Extensively Expanded Auricular Chondrocytes Form Neocartilage In Vivo.
Cartilage;
5(4): 241-51, 2014 Oct.
Artigo
em Inglês
| MEDLINE | ID: mdl-26069703
16.
Successful creation of tissue-engineered autologous auricular cartilage in an immunocompetent large animal model.
Tissue Eng Part A;
20(1-2): 303-12, 2014 Jan.
Artigo
em Inglês
| MEDLINE | ID: mdl-23980800
17.
Combined surface micropatterning and reactive chemistry maximizes tissue adhesion with minimal inflammation.
Adv Healthc Mater;
3(4): 565-71, 2014 Apr.
Artigo
em Inglês
| MEDLINE | ID: mdl-24106240
18.
Biologic properties of surgical scaffold materials derived from dermal ECM.
Biomaterials;
34(23): 5776-84, 2013 Jul.
Artigo
em Inglês
| MEDLINE | ID: mdl-23642537
19.
Design of composite scaffolds and three-dimensional shape analysis for tissue-engineered ear.
J R Soc Interface;
10(87): 20130413, 2013 Oct 06.
Artigo
em Inglês
| MEDLINE | ID: mdl-23904585
20.
The tissue-engineered auricle: past, present, and future.
Tissue Eng Part B Rev;
18(1): 51-61, 2012 Feb.
Artigo
em Inglês
| MEDLINE | ID: mdl-21827281