Your browser doesn't support javascript.


Atenção Primária à Saúde

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:


Adicionar mais destinatários
| |

Molecular characterization and phylogenetic analysis of a dengue virus serotype 3 isolated from a Chinese traveler returned from Laos.

Mo, Ling; Shi, Jiandong; Guo, Xiaofang; Zeng, Zhaoping; Hu, Ningzhu; Sun, Jing; Wu, Meini; Zhou, Hongning; Hu, Yunzhang.
Virol J; 15(1): 113, 2018 07 24.
Artigo em Inglês | MEDLINE | Jul 2018 | ID: mdl-30041666
Resumo: BACKGROUND: Dengue virus (DENV) infection caused by international visitors has become a public health concern in China. Although sporadic imported cases of DENV have been documented in Yunnan, China since 2000, a complete genome sequence of dengue virus serotype 3 (DENV-3) imported from Laos is still not available. Here, we report the first complete genome sequence and genomic characterization of a DENV-3 strain (YNPE3) isolated from a patient returned from Laos. METHODS: Viral isolation from the patient's serum was performed using mosquitoes C6/36 cells. Reverse transcriptase polymerase chain reaction (RT-PCR) was used for identification and serotyping of the virus. The complete sequence was determined by Sanger dideoxy sequencing. Homology analysis was implemented by NCBI-BLAST. Multiple sequence alignment was performed using MegAlign module of the Lasergene 7 software package DNASTAR. MFOLD software was used to predict the RNA secondary structure of 5' untranslated region (UTR) and 3' UTR. Phylogenetic analysis, which was based on envelope gene and complete coding sequence, was performed by Maximum-Likelihood method. RESULTS: RT-PCR analysis confirmed that the virus belonged to dengue virus serotype 3, which was named YNPE3 strain. The full-length genome of the YNPE3 strain was 10,627 nucleotides (nts) with an open reading frame (ORF) encoding 3390 amino acids. Strain YNPE3 shared 98.6-98.8% nucleotide identity with the closely related strains isolated in India (JQ922556, KU216209, KU216208). We observed the deletion of about 40 nts in the 5' UTR and 3' UTR of strain YNPE3, and 11 nts (ACGCAGGAAGT) insertion that was present in the 3' UTR of YNPE3. Compared with prototype strain H87, abundant amino acid substitutions in the YNPE3 strain were observed. Phylogenetic analysis revealed that the YNPE3 strain belonged to genotype III of DENV-3, and that it might be closely related with genotype III strains isolated in Laos and India. CONCLUSIONS: This is the first report of the complete genome sequence and molecular characterization of a DENV-3 isolate imported from Laos. The presented results can further promote disease surveillance, and epidemiological and evolutionary studies of the DENV-3 in Yunnan province of China.