Your browser doesn't support javascript.

Biblioteca Virtual em Saúde


Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:


Adicionar mais destinatários
| |

Binding of the wheat germ lectin to Cryptococcus neoformans chitooligomers affects multiple mechanisms required for fungal pathogenesis.

Fonseca, Fernanda L; Guimarães, Allan J; Kmetzsch, Lívia; Dutra, Fabianno F; Silva, Fernanda D; Taborda, Carlos P; Araujo, Glauber de S; Frases, Susana; Staats, Charley C; Bozza, Marcelo T; Schrank, Augusto; Vainstein, Marilene H; Nimrichter, Leonardo; Casadevall, Arturo; Rodrigues, Marcio L.
Fungal Genet Biol; 60: 64-73, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23608320
The principal capsular component of Cryptococcus neoformans, glucuronoxylomannan (GXM), interacts with surface glycans, including chitin-like oligomers. Although the role of GXM in cryptococcal infection has been well explored, there is no information on how chitooligomers affect fungal pathogenesis. In this study, surface chitooligomers of C. neoformans were blocked through the use of the wheat germ lectin (WGA) and the effects on animal pathogenesis, interaction with host cells, fungal growth and capsule formation were analyzed. Treatment of C. neoformans cells with WGA followed by infection of mice delayed mortality relative to animals infected with untreated fungal cells. This observation was associated with reduced brain colonization by lectin-treated cryptococci. Blocking chitooligomers also rendered yeast cells less efficient in their ability to associate with phagocytes. WGA did not affect fungal viability, but inhibited GXM release to the extracellular space and capsule formation. In WGA-treated yeast cells, genes that are involved in capsule formation and GXM traffic had their transcription levels decreased in comparison with untreated cells. Our results suggest that cellular pathways required for capsule formation and pathogenic mechanisms are affected by blocking chitin-derived structures at the cell surface of C. neoformans. Targeting chitooligomers with specific ligands may reveal new therapeutic alternatives to control cryptococcosis.
Selo DaSilva